
Analysis Of Optimal Route Algorithms Under Constraint Conditions
M.V.Mawale1, Dr. Y.B.Gandole2

1 Department of Computer Science, 2 Department of Electronics

Adarsha Science J.B.Arts and Birla Commerce, Mahavidyalaya

Dhamangaon Rly-444709 (India)

Abstract— The shortest path problem is the problem of finding
a path between two vertices (or nodes) such that the sum of the
weights of its constituent edges is minimized. Clearly, the choice
of shortest-path algorithm for a particular problem will involve
complex tradeoffs between flexibility, scalability, performance,
and implementation complexity. The comparison made by us
developed provides a basis for evaluating these tradeoffs. It was
found that although factoring in this optimization to larger
degrees did lead to significant imperfections, a balanced level was
located where not only were perfect or near-perfect paths were
found, but they were also found in the shortest time. the paper
analyses the existing optimal route algorithms on a specific
problem under constraint conditions with optimal factors based
on the Dijkstra algorithm, Bellman Ford Algorithms and A*
Algorithms. The paper also gives a method of the algorithm
design in detail, and analyses of its time complexity and space

complexity.

Keywords— Optimal Route, Dijkstra algorithm, Bellman Ford
Algorithms, A* Algorithms.

I. INTRODUCTION

The optimal route has many meanings, not only the shortest
distance in the general geography, but also the shortest time,
the least expense, the route utilization and so on. Regardless
of using which judgment standard, its core problem is the
shortest-route algorithm. The optimal route category may
include: the longest route, the most reliable route, the
maximum capacity route, accessibility evaluation and various
route distributions [1-4]. In graph theory, the shortest path
problem (Optimal Route) is the problem of finding a path
between two vertices (or nodes) such that the sum of the
weights of its constituent edges is minimized. An example is
finding the quickest way to get from one location to another
on a road map; in this case, the vertices represent locations
and the edges represent segments of road and are weighted by
the time needed to travel that segment. The problem is also
sometimes called the single-pair shortest path problem, to
distinguish it from the following generalizations:
 single-source shortest path problem, in which to find

shortest paths from a source vertex v to all other vertices
in the graph.

 single-destination shortest path problem, in which find
shortest paths from all vertices in the graph to a single
destination vertex v. This can be reduced to the single-
source shortest path problem by reversing the edges in the
graph.

 all-pairs shortest path problem, in which to find shortest
paths between every pair of vertices v, v' in the graph.

These generalizations have significantly more efficient
algorithms than the simplistic approach of running a single-
pair shortest path algorithm on all relevant pairs of vertices.
Clearly, the choice of shortest-path algorithm for a particular
problem will involve complex tradeoffs between flexibility,
scalability, performance, and implementation complexity. The
comparison made by us developed provides a basis
for evaluating these tradeoffs. It was found that although
factoring in this optimization to larger degrees did lead to
significant imperfections, a balanced level was located where
not only were perfect or near-perfect paths were found, but
they were also found in the shortest time [6-16].This paper is
focus on the comparison of three different shortest path
algorithms. The problem is an important problem in graph
theory and has applications in communications, transportation,
and electronics problems. It is interesting because analysis
shows that three algorithms can be optimal in different
circumstances, depending on tradeoffs between computation
and communication costs.

II OPTIMAL ROUTE ALGORITHMS

1. Dijkstra’s Algorithm
Dijkstra's algorithm solves the problem of finding the shortest
path from a point in a graph (the source) to a destination. It
turns out that one can find the shortest paths from a given
source to all points in a graph in the same time, hence this
problem is sometimes called the single-source shortest paths
problem.
This problem is related to the spanning tree one. The graph
representing all the paths from one vertex to all the others
must be a spanning tree - it must include all vertices. There
will also be no cycles as a cycle would define more than one
path from the selected vertex to at least one other vertex. For a
graph [5],
G = (V,E) (1)
Where V is a set of vertices and E is a set of edges.Time
Complexity = V log (E) (2)
Space Complexity = V*(V+E) log (V) (3)
Procedure:

 Step 1 [Initialization]
o T = {s} Set of nodes so far incorporated
o L(n) = w(s, n) for n ≠ s

M.V. Mawale et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2614-2619.

2614

o initial path costs to neighboring nodes are
simply link costs

 Step 2 [Get Next Node]
o find neighboring node not in T with least-

cost path from s
o incorporate node into T
o also incorporate the edge that is incident on

that node and a node in T that contributes to
the path

 Step 3 [Update Least-Cost Paths]
o L(n) = min[L(n), L(x) + w(x, n)] for all n Ï

T
o f latter term is minimum, path from s to n is

path from s to x concatenated with edge
from x to n

It perform following function
 finds shortest paths from given source node s

to all other nodes
 by developing paths in order of increasing

path length
 algorithm runs in stages each time adding

node with next shortest path
 algorithm terminates when all nodes processed

by algorithm (in set T)
Bellman Ford Algorithm
The Bellman–Ford algorithm, a label correcting algorithm,
computes single-source shortest paths in a weighted digraph
(where some of the edge weights may be negative). Dijkstra's
algorithm solves the same problem with a lower running time,
but requires edge weights to be non-negative. Thus, Bellman–
Ford is usually used only when there are negative edge
weights. If the graph does contain a cycle of negative weights,
Bellman-Ford can only detect this; Bellman-Ford cannot find
the shortest path that does not repeat any vertex in such a
graph. This problem is at least as hard as the NP-complete
longest path problem.
Bellman Ford Algorithm Procedure
Bellman–Ford runs in O(|V|·|E|) time, where |V| and |E| are the
number of vertices and edges respectively. This
implementation takes in a graph, represented as lists of
vertices and edges, and modifies the vertices so that their
distance and predecessor attributes store the shortest paths.
Procedure Bellman Ford (list vertices, list edges, vertex
source)
 Step 1: Initialize graph
 for each vertex v in vertices:
 if v is source then v.distance := 0
 else v.distance := infinity
 v.predecessor := null
 Step 2: relax edges repeatedly
 for i from 1 to size(vertices)-1:
 for each edge uv in edges:
 u := uv.source
 v := uv.destination
 if v.distance > u.distance + uv.weight:
 v.distance := u.distance + uv.weight
 v.predecessor := u

Step 3: check for negative-weight cycles
 for each edge uv in edges:
 u := uv.source
 v := uv.destination
 if v.distance > u.distance + uv.weight:
 error "Graph contains a negative-weight cycle"

Time Complexity = V*E * log(V*L)

Space Complexity= V
A* Algorithm
1. Create a search graph G, consisting solely of the start node,

no. Put no on a list called OPEN.
2. Create a list called CLOSED that is initially empty.
3. If OPEN is empty, exit with failure.
4. Select the first node on OPEN, remove it from OPEN,

and put it on CLOSED. Called this node n.
5. If n is a goal node, exit successfully with the solution

obtained by tracing a path along the pointers from n to no
in G. (The pointers define a search tree and are
established in Step 7.)

6. Expand node n, generating the set M, of its successors
that are not already ancestors of n in G. Install these
members of M as successors of n in G.

7. Establish a pointer to n from each of those members of M
that were not already in G (i.e., not already on either
OPEN or CLOSED). Add these members of M to OPEN.
For each member, m, of M that was already on OPEN or
CLOSED, redirect its pointer to n if the best path to m
found so far is through n. For each member of M already
on CLOSED, redirect the pointers of each of its
descendants in G so that they point backward along the
best paths found so far to these descendants.

8. Reorder the list OPEN in order of increasing f values.
(Ties among minimal f values are resolved in favor of the
deepest node in the search tree.)

9. Time Complexity=Log (H*V)
10. Space Complexity= V+E

III IMPLEMENTATION AND TESTING

This section discussed the use and testing of application.
Testing process conducted by performing the test route search
using existing network path finding algorithms with multiple
destinations at once and by providing constraints
Implementation of Dijkstra’s Algorithm
The Routing Implementation of Dijkstra’s Algorithm for the
network is shown in Fig. 1.

Fig. 1 Routing Implementation of Dijkstra’s Algorithm

M.V. Mawale et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2614-2619.

2615

Implementation of bellman Ford Algorithm
The Routing Implementation of bellman Ford Algorithm for
the network is shown in Fig. 2.

Fig. 2 Routing Implementation of bellman Ford
Algorithm

IV EXPERIMENTAL RESULT ANALYSIS

The experimental result analysis for Dijkstra’s Algorithm and
Bellman ford Algorithm are shown in Figure 1 and 2
respectively.

Table 1 Experimental Result Analysis of Dijkstra’s
Algorithm

Iteration T L(2) Path L(3) Path L(4) Path L(5) Path L(6) Path
1 {1} 2 1–2 5 1-3 1 1–4 - -

2 {1,4} 2 1–2 4 1-4-3 1 1–4 2 1-4–5 -

3 {1, 2, 4} 2 1–2 4 1-4-3 1 1–4 2 1-4–5 -

4 {1, 2, 4, 5} 2 1–2 3
1-4-5–

3
1 1–4 2 1-4–5 4 1-4-5–6

5
{1, 2, 3, 4,

5}
2 1–2 3

1-4-5–
3

1 1–4 2 1-4–5 4 1-4-5–6

6
{1, 2, 3, 4,

5, 6}
2 1-2 3 1-4-5-3 1 1-4 2 1-4–5 4 1-4-5-6

Table 2 Experimental Result analysis of Bellman ford

Algorithm
h Lh(2) Path Lh(3) Path Lh(4) Path Lh(5) Path Lh(6) Path

0 - - - - -

1 2 1-2 5 1-3 1 1-4 - -

2 2 1-2 4 1-4-3 1 1-4 2 1-4-5 10 1-3-6

3 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

4 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

Efficiency
1. Dijkstra's algorithm
The efficiency of Dijkstra’s varies depending on |V|=n Delete
Min sand |E| updates for priority queues that were used. If a
Fibonacci heap was used then the complexity is O(| E | + | V |
log | V |) ,which is the best bound. The Delete Mins operation
takes O(log|V|).If a standard binary heap is used then the
complexity is O(| E |log |E|),| E | log |E|. If the set used is a
priority queue then the complexity is O(|E|+|V|2) where
O(|V|2) is from |V| scans of the unordered set New Frontier
to find the vertex with the least Distance value.

2. Bellman-Ford algorithm
Routing algorithms based on the distributed Bellman-Ford
algorithm (DBF) suffer from exponential message complexity
in some scenarios. The message complexity of the first
algorithm, called the multiplicative approximation algorithm,
is O(nm log (nΔ)), where Δ is the maximum length over all
edges of an n-nodes m-edges network. The message
complexity of the second algorithm, called the additive
approximation algorithm, is O(Δ/δ nm), where is δ is the
minimum length over all edges in the network.
3. A* Search Algorithm
A* search has been implemented in the UMOP multi-agent
planning framework to study its performance characteristics.
The time limit was 600 seconds and the memory limit was
450 MB. For UMOP and DOP the number allocated BDD
nodes of the BDD-package and the number of partitions in the
disjunctive partitioning were hand-tuned for best performance.

Big-O Notation for complexity and is expressed in terms of
the order of magnitude of frequency count gives in the table 3.
The graphical comparison for efficiency in terms of speed is
shown in Fig. 3

Table 3 Efficiency in terms of speed
Run
Time(N)

Dijkstra Bellman
Ford

A* Speed(F)

400 5.490 4.770 3.246 0.799
500 6.862 5.962 4.058 0.999
600 8.235 7.155 4.869 1.198
700 9.607 8.347 5.681 1.398
800 10.980 9.540 6.493 1.598
900 12.353 10.732 7.304 1.798
1000 13.725 11.925 8.116 1.998

Fig.3 : Comparison of efficiency in terms of speed

Time Complexity
1. Dijkstra algorithm
A implementation of the priority queue gives a run time
complexity O(V²), where V is the number of vertices.
Implementing the priority queue with a Fibonacci heap makes
the time complexity O(E + V log V), where E is the number of
edges.
2. Bellman ford algorithm
Its worst case time complexity is the same as the original
Dijkstra Algorithm i.e. O(| V | 2) , where | V | is the number

M.V. Mawale et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2614-2619.

2616

of nodes in the network. Unlike QoSRBF it is not ensured
that QoSRDKS can always find a rout satisfying multiple
QoS requirements, even when there exists one. The simulation
results show, however that QoSRDKS is also very efficient.
3. A* search algorithm
A* algorithm generally is polynomial however it can become
exponential when it's exponential have it's complexity as
O(x^n) where n is the maximum length of any path in the
revealed area and x is a is the average number of edges per
node.

The table 4 gives that the Time Complexity of the
shortest path algorithms depends on the number of vertices,
number of edges , edge length and the heuristic in case of the
A* algorithm. It is observed that the time complexity of the
Dijkstra’s Algorithm depends on the number of vertices and is
inversely proportional to the number of vertices. The
comparison of Time complexity is shown in Fig. 4. For the
graph of six vertices and nine edges The Dijsktra’s algorithm
gives time complexity of 7.0036 which is far below than that
of Bellman Ford because the number of vertices is less and the
Bellman Ford algorithm depends on the edges length as well

Table4 : Analysis of time Complexity
Algorith
m

Formula Vertex
(V)

Edges
(E)

Length
(L)

Heuristi
c(H)

Time
Complexit
y

Dijkstra’s V log (E) 6 9 10 - 7.0036
Bellman
Ford

V*E* log(V*L) 6 9 10 - 96.00

A* Log (H*V) 6 9 10 100 2.77

Fig.4 Comparision of Time Complexity

Computational Cost
1. Dijkstra’s algorithm
Computational cost of Dijkstra's algorithm using an array or
list to store the labeled vertices is O(V2 + E) = O(V2)
2. Bellman Ford algorithm
In the worst case computational cost of Bellman Ford
algorithm uses O(V3) time in order to find single-source
shortest paths. This is not very efficient. By a slight
modification it can find all-pairs shortest paths in the same
time.
3. A* search algorithm
The complexity for A* depends on the heuristic. In the worst
case, the number of nodes expanded is exponential in the
length of the solution (the shortest path), but it is polynomial
when the heuristic function h meets the following condition:|
h(x) − h * (x) | = O(logh * (x))
where h * is the optimal heuristic,

Table 5 shows the numerical analysis and Fig.5 shows the
graphical analysis of the computational cost performed for the
graph with six vertices and nine edges.

Table 5 Analysis of Computational Cost

Method
Cost

Complexity
Communication

Number
Communication

Volume

Dijkstra’s FN3/P 28.56 0 0 0 0

Bellman
Ford

N3/P 24 N log(P) 5.72 N2 log(P) 34.352

A* N3/P 24 N log (P) 5.72
N2

log(P)/sqrt(P)
11.45

Fig. 5 Comparison of Cost Complexity

Space Complexity
The space complexity of Dijkstra’s algorithm is more for the
lower values of the vertex as it is inversely proportional to the
vertex. The Bellman Ford space complexity is lower for the
lower number of vertices and is directly proportional to the
cardinality of the vertices.

Table 6 Analysis of Space Complexity
Algorithm Formula Vertex(V) Edges(E) Space

Complexity
Dijkstra’s V*(V+E) log (V) 6 9 70.033
Bellman
Ford

V 6 9 6

A* V+E 6 9 15

Fig. 6 Comparison of space complexity

Fig. 6 indicates the A* being a search algorithm basically
gives near to constant space complexity and has negligible
effect for the number of vertices where as Dijkstra’s algorithm
and Bellman Ford as more variations for small changes of the
number of vertices .
Performance and Efficiency
Performance and Efficiency is depending on the previously
compared parameters that is Computation Cost, Speed and
Space and Time complexity. It is observed that lower number

M.V. Mawale et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2614-2619.

2617

of nodes in Bellman Ford algorithm is Better and for the
Higher number of nodes the Dijkstra’s algorithm is more
efficient. The A* algorithm is best suited for the searching for
the nodes amongst the High number of nodes.
Debugging Activities
1. Dijkstra’s algorithm
Assertions are used for the implementation of the algorithm
and it vary from case to case. In this case it is capable to
handle the graphs with more than 10000 vertices. Hence
included an assertion that will fail if the input violates this
assumption.
2. Bellman ford algorithm
Debugging equation for Bellman-Ford when Label routers
i=A, B, C, … and D(i,j) = distance for best route from i to
remote j and d(i,j) = distance from router i to neighbor j then
it set to infinity if i=j or i and j not immediate neighbors.
3. A* search algorithm
There are number of simple optimizations or implementation
details that can significantly affect the performance of an A*
implementation. The first detail is that the way the priority
queue handles ties and has a significant effect on performance
on applications. If ties are broken so the queue behaves in a
LIFO manner, A* will behave like Depth-first search among
equal cost paths.
Better Algorithms under specific application
 Dijkstra's algorithm can be implemented in O(|V|^2) or
O(|E|*log(|V|)) time depending on how the next node to
consider is chosen. It is observed that as |E| increases, it
approaches |V|^2, so choosing the right programming
representation requires knowing something about the potential
inputs to the application area.
On the other hand the Bellman Ford algorithm that handles
negative weighted edges runs in O(|E| * |V|) time, which is
significantly slower -- for so-called dense graphs with many
edges, it can approach a cubic time of O(|V|*|E|) as |E| is
O(|V|^2).
A* algorithm is the best algorithm for searching the path at
least cost. It uses a distance-plus-cost heuristic function
(usually denoted f(x)) to determine the order in which the
search visits nodes in the tree.

V RESULT AND DISCUSSION

While analysing the result for the application specific
comparison of three shortest path problem solving algorithms
namely Dijkstra’s, Bellman Ford and A* Algorithms. It is
noted that Dijkstra’s and Bellman Ford algorithms solve the
single source shortest path problem. The primary difference in
the function of the two algorithms is that Dijkstra's algorithm
cannot handle negative edge weights. Bellman-Ford's
algorithm can handle some edges with negative weight. It is
noted that if there is a negative cycle there is no shortest path.
Following points gives the result analysis of the different
algorithm for some application specific.
Computational Cost Summery

 The maximum time over all process depends on
number of vertex and edges.

 The cost complexity for Dijkstra’s algorithm is
highest than Bellman Ford algorithm.

 The cost complexity of Bellman Ford algorithm is
almost same

Efficiency in terms of speed
 The Bellman Ford Algorithm was faster than the

Dijkstra’s algorithm.
 Speed advantage for Bellman Ford algorithm was

less than reported value, F = 1.19
 Speed for Dijkstra’s is highest for same number of

process run.
 With increasing number of process, Dijkstra’s

algorithm eventually becomes faster because no
communication occurs

Time complexity
 Time Complexity of the shortest path algorithms

depends on the number of vertices, number of edges ,
edge length and the heuristic in case of the A*
algorithm.

 It observed that the time complexity of the Dijkstra’s
Algorithm depends on the number of vertices and is
inversely proportional to the number of vertices.

 Time complexity was highest for Bellman Ford than
Dijkstra’s and A*algorithm.

 Time complexity was worst for A* algorithm.
 Performance and Efficiency
Performance and Efficiency
It found that for lower number of nodes the Bellman Ford
algorithm is better and for the higher number of nodes the
Dijkstra’s Algorithm is more efficient.

 The A* algorithm is best suited for the searching for
the nodes amongst the large number of nodes.

Debugging Activities
 The Dijkstra’s algorithm is easy to implement and

thus the debugging of it is also simpler.
 The Bellman Ford algorithm is most difficult to

implement and is basically finds its use in the
network routers thus is difficult to debug as hardware
constraints are also to be considered while
implementing.

 A* Algorithm is the variation of the Bellman ford but
is basically used as searching algorithm debugging
depends on the amount of the data to search among.

VI CONCLUSION

In the result of the study it found that none of the algorithm is
capable to handle the bottleneck in network if the number of
nodes increases or the network traffic increases.
Following conclusion are drawn from the study for each
algorithm
 Dijkstra’s Algorithms

o Dijkstra’s As per the numerical analysis performed
conclude that Dijkstra’s algorithm is comparatively
more efficient if the number of nodes is more and the
implementation is also easier. The applications where

M.V. Mawale et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2614-2619.

2618

the Network traffic is more the Dijkstra’s algorithm
based applications are better but for the low traffic
networks the Bellman Ford based Systems perform
faster.
o Study recommended that implementation of

Dijkstra's algorithm best because it is easier to
code and will be about as efficient as A*.

o Dijkstra’s algorithm radiates out from the initial
node.

 Bellman Ford Algorithms
o Efficiency dependent on processing time of

algorithms
o Space and Time complexity depends on amount

of information required from other nodes
o Its implementation is specific and depends on

application implementation.
o It converge under static topology and costs
o It converge to same solution
o If link costs depend on traffic, which depends on

routes chosen, may have feedback instability.
 A* Algorithms

o A* search algorithm is having better utility if it
is be for the searching of the nodes and thus the
optimized search applications should use it for
better result.

o The A* algorithm directs its search towards the
destination basically, with a heuristic is
equivalent to A* except for a couple of technical
fact.

o A* use less memory.
o The effectiveness of the A* algorithm depends

on the heuristic h(x)
o It run in polynomial time

REFERENCE

[1] SI Lian-fa, WANG Wen-jing.Realization of Optimal
Algorithm for Fast Dijkstra Latest Path. Bulletin of
Surveying and Mapping.2005,(8) pp .15-18.

[2] ZHANG Chi-jun,YANG Yong-jian,ZHAO Hong-bo.
Improvement and Realization of the Shortest Path
Algorithm Based on Path-dependent.Computer
Engineering and Applications. 2006,25(2) ,pp.56-58.

[3] WANG Kai-yi,ZHAO Chun-jiang,XU Gui-
xian,etc.A High-efficiency Realization Way of the
Shortest Path Search Problem in GIS Field.Journal of
Image and Graphics. 003,8(8) pp. 951-956.

[4] WANG Jin-feng,LI Lian-fa,GE Yong,etc.A
Theoretic Framework for Spatial Analysis.Acta
Geographica Sinica. 2001,55(1) , pp.92-102.

[5] Dijkstra, E. W. "A Note on Two Problems in
Connection with Graphs." Numerische Math. 1, 269-
271, 1959.

[6] Whiting, P. D. and Hillier, J. A. "A Method for
Finding the Shortest Route through a Road
Network." Operational Res. Quart. 11, 37-40, 1960.

[7] Richard Bellman(1958) ''On a Routing Problem'', in
Quarterly of Applied Mathematics,16(1),pp.87-90

[8] Lestor R. Ford jr., D. R. Fulkerson(1962.) ''Flows in
Networks'', Princeton University Press,

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein(2001) ''Introduction to
Algorithms'', Second Edition. MIT Press and
McGraw-Hill,. ISBN 0-262-03293-7. Section 24.1:
The Bellman-Ford algorithm, pp.588–592.

[10] Mongkol Ekpanyapong, Thaisiri Waterwai Sung,
Kyu Lim(2006) “Statistical Bellman-Ford algorithm
with an application to retiming” Asia and South
Pacific Design Automation Conference archive
Proceedings of the 2006 Asia and South Pacific
Design Automation Conference Pages: 959 - 964

[11] Andrew V. Goldberga, and Tomasz
Radzikb,(1993), ”A heuristic improvement of the
Bellman-Ford algorithm”, Applied Mathematics
Letters,Volume 6, Issue 3, May 1993, Pages 3-6

[12] Robert Sedgewick. Algorithms in Java. Third Edition.
ISBN 0-201-36121-3. Section 21.7: Negative Edge
Weights.
http://safari.oreilly.com/0201361213/ch21lev1sec7

[13] Jin Y. Yen. "An algorithm for Finding Shortest
Routes from all Source Nodes to a Given Destination
in General Network", Quart. Appl. Math., 27, 1970,
526-530.

[14] Richard Bellman: On a Routing Problem, in
Quarterly of Applied Mathematics, 16(1), pp.87-90,
1958.

[15] Lestor R. Ford jr., D. R. Fulkerson: Flows in
Networks, Princeton University Press, 1962.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to
Algorithms, Second Edition. MIT Press and
McGraw-Hill, 2001. ISBN 0-262-03293-7. Section
24.1: The Bellman-Ford algorithm, pp.588–592.
Problem 24-1, pp.614–615.

M.V. Mawale et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2614-2619.

2619

