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Abstract— The shortest path problem is the problem of finding 
a path between two vertices (or nodes) such that the sum of the 
weights of its constituent edges is minimized. Clearly, the choice 
of shortest-path algorithm for a particular problem will involve 
complex tradeoffs between flexibility, scalability, performance, 
and implementation complexity. The comparison made by us 
developed provides a basis for   evaluating these tradeoffs. It was 
found that although factoring in this optimization to larger 
degrees did lead to significant imperfections, a balanced level was 
located where not only were perfect or near-perfect paths were 
found, but they were also found in the shortest time. the paper 
analyses the existing optimal route algorithms on a specific 
problem under constraint conditions with optimal factors based 
on the Dijkstra algorithm, Bellman Ford Algorithms and A* 
Algorithms. The paper also gives a method of the algorithm 
design in detail, and analyses of its time complexity and space 

complexity. 
 
Keywords— Optimal Route, Dijkstra algorithm, Bellman Ford 
Algorithms, A* Algorithms. 

I. INTRODUCTION 

The optimal route has many meanings, not only the shortest 
distance in the general geography, but also the shortest time, 
the least expense, the route utilization and so on. Regardless 
of using which judgment standard, its core problem is the 
shortest-route algorithm. The optimal route category may 
include: the longest route, the most reliable route, the 
maximum capacity route, accessibility evaluation and various 
route distributions [1-4]. In graph theory, the shortest path 
problem (Optimal Route) is the problem of finding a path 
between two vertices (or nodes) such that the sum of the 
weights of its constituent edges is minimized. An example is 
finding the quickest way to get from one location to another 
on a road map; in this case, the vertices represent locations 
and the edges represent segments of road and are weighted by 
the time needed to travel that segment. The problem is also 
sometimes called the single-pair shortest path problem, to 
distinguish it from the following generalizations: 
 single-source shortest path problem, in which  to find 

shortest paths from a source vertex v to all other vertices 
in the graph.  

 single-destination shortest path problem, in which  find 
shortest paths from all vertices in the graph to a single 
destination vertex v. This can be reduced to the single-
source shortest path problem by reversing the edges in the 
graph.  

 all-pairs shortest path problem, in which to find shortest 
paths between every pair of vertices v, v' in the graph.  

These generalizations have significantly more efficient 
algorithms than the simplistic approach of running a single-
pair shortest path algorithm on all relevant pairs of vertices.  
Clearly, the choice of shortest-path algorithm for a particular 
problem will involve complex tradeoffs between flexibility, 
scalability, performance, and implementation complexity. The 
comparison made by us developed provides a basis 
for   evaluating these tradeoffs. It was found that although 
factoring in this optimization to larger degrees did lead to 
significant imperfections, a balanced level was located where 
not only were perfect or near-perfect paths were found, but 
they were also found in the shortest time [6-16].This paper is 
focus on the comparison of three different shortest path 
algorithms. The problem is an important problem in graph 
theory and has applications in communications, transportation, 
and electronics problems. It is interesting because analysis 
shows that three algorithms can be optimal in different 
circumstances, depending on tradeoffs between computation 
and communication costs. 
 

II OPTIMAL ROUTE ALGORITHMS 
 
1. Dijkstra’s Algorithm  
Dijkstra's algorithm solves the problem of finding the shortest 
path from a point in a graph (the source) to a destination. It 
turns out that one can find the shortest paths from a given 
source to all points in a graph in the same time, hence this 
problem is sometimes called the single-source shortest paths 
problem.  
This problem is related to the spanning tree one. The graph 
representing all the paths from one vertex to all the others 
must be a spanning tree - it must include all vertices. There 
will also be no cycles as a cycle would define more than one 
path from the selected vertex to at least one other vertex. For a 
graph [5], 
G = (V,E)      (1) 
Where V is a set of vertices and E is a set of edges.Time 
Complexity    = V log (E)      (2) 
Space Complexity = V*(V+E) log (V)  (3) 
Procedure: 

 Step 1 [Initialization]  
o T = {s} Set of nodes so far incorporated  
o L(n) = w(s, n)   for n ≠ s  
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o initial path costs to neighboring nodes are 
simply link costs  

 Step 2 [Get Next Node]  
o find neighboring node not in T with least-

cost path from s  
o incorporate node into T  
o also incorporate the edge that is incident on 

that node and a node in T that contributes to 
the path  

 Step 3 [Update Least-Cost Paths]  
o L(n) = min[L(n), L(x) + w(x, n)] for all n Ï 

T  
o f latter term is minimum, path from s to n is 

path from s to x concatenated with edge 
from x to n  

It perform following function  
 finds shortest paths from given source node s 

to all other nodes  
 by developing paths in order of increasing 

path length  
 algorithm runs in stages each time adding 

node with next shortest path  
 algorithm terminates when all nodes processed 

by algorithm (in set T) 
Bellman Ford Algorithm 
The Bellman–Ford algorithm, a label correcting algorithm, 
computes single-source shortest paths in a weighted digraph 
(where some of the edge weights may be negative). Dijkstra's 
algorithm solves the same problem with a lower running time, 
but requires edge weights to be non-negative. Thus, Bellman–
Ford is usually used only when there are negative edge 
weights. If the graph does contain a cycle of negative weights, 
Bellman-Ford can only detect this; Bellman-Ford cannot find 
the shortest path that does not repeat any vertex in such a 
graph. This problem is at least as hard as the NP-complete 
longest path problem. 
Bellman Ford Algorithm Procedure 
Bellman–Ford runs in O(|V|·|E|) time, where |V| and |E| are the 
number of vertices and edges respectively. This 
implementation takes in a graph, represented as lists of 
vertices and edges, and modifies the vertices so that their 
distance   and    predecessor attributes store the shortest paths. 
Procedure Bellman Ford (list vertices, list edges, vertex 
source) 
  Step 1: Initialize graph 
        for each vertex v in vertices: 
                         if v is source then v.distance := 0 
                         else v.distance := infinity 
                         v.predecessor := null 
   Step 2: relax edges repeatedly 
   for i from 1 to size(vertices)-1:        
       for each edge uv in edges:  
           u := uv.source 
           v := uv.destination              
           if v.distance > u.distance + uv.weight: 
               v.distance := u.distance + uv.weight 
               v.predecessor := u 

Step 3: check for negative-weight cycles 
   for each edge uv in edges: 
       u := uv.source 
       v := uv.destination 
                if v.distance > u.distance + uv.weight: 
                error "Graph contains a negative-weight cycle" 

Time Complexity    = V*E * log(V*L) 

Space Complexity= V 
A* Algorithm 
1.  Create a search graph G, consisting solely of the start node, 

no. Put no on a list called OPEN.  
2. Create a list called CLOSED that is initially empty.  
3. If OPEN is empty, exit with failure.  
4. Select the first node on OPEN, remove it from OPEN, 

and put it on CLOSED. Called this node n.  
5. If n is a goal node, exit successfully with the solution 

obtained by tracing a path along the pointers from n to no 
in G. (The pointers define a search tree and are 
established in Step 7.)  

6. Expand node n, generating the set M, of its successors 
that are not already ancestors of n in G. Install these 
members of M as successors of n in G.  

7. Establish a pointer to n from each of those members of M 
that were not already in G (i.e., not already on either 
OPEN or CLOSED). Add these members of M to OPEN. 
For each member, m, of M that was already on OPEN or 
CLOSED, redirect its pointer to n if the best path to m 
found so far is through n. For each member of M already 
on CLOSED, redirect the pointers of each of its 
descendants in G so that they point backward along the 
best paths found so far to these descendants.  

8. Reorder the list OPEN in order of increasing f values. 
(Ties among minimal f values are resolved in favor of the 
deepest node in the search tree.)  

9. Time Complexity=Log (H*V) 
10. Space Complexity= V+E 

 
III IMPLEMENTATION AND TESTING 

 
This section discussed the use and testing of application. 
Testing process conducted by performing the test route search 
using existing network path finding algorithms with multiple 
destinations at once and by providing constraints 
Implementation of Dijkstra’s Algorithm 
The Routing Implementation of Dijkstra’s Algorithm  for the  
network is shown in Fig. 1. 

 
Fig. 1 Routing Implementation of Dijkstra’s Algorithm 
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Implementation of bellman Ford Algorithm 
The Routing Implementation of bellman Ford Algorithm for 
the network is shown in Fig. 2. 
 

 
Fig. 2 Routing Implementation of bellman Ford 
Algorithm 

 

IV EXPERIMENTAL RESULT ANALYSIS 

The experimental result analysis for Dijkstra’s Algorithm and 
Bellman ford Algorithm are shown in Figure 1 and 2 
respectively. 
 

Table 1  Experimental Result Analysis of Dijkstra’s 
Algorithm 

Iteration T L(2) Path L(3) Path L(4) Path L(5) Path L(6) Path 
1 {1} 2 1–2 5 1-3 1 1–4  -  - 

2 {1,4} 2 1–2 4 1-4-3 1 1–4 2 1-4–5  - 

3 {1, 2, 4} 2 1–2 4 1-4-3 1 1–4 2 1-4–5  - 

4 {1, 2, 4, 5} 2 1–2 3 
1-4-5–

3 
1 1–4 2 1-4–5 4 1-4-5–6

5 
{1, 2, 3, 4, 

5} 
2 1–2 3 

1-4-5–
3 

1 1–4 2 1-4–5 4 1-4-5–6

6 
{1, 2, 3, 4, 

5, 6} 
2 1-2 3 1-4-5-3 1 1-4 2 1-4–5 4 1-4-5-6

 
Table 2  Experimental Result analysis of Bellman ford 

Algorithm 
h Lh(2) Path Lh(3) Path Lh(4) Path Lh(5) Path Lh(6) Path 

0  -  -  -  -  - 

1 2 1-2 5 1-3 1 1-4  -  - 

2 2 1-2 4 1-4-3 1 1-4 2 1-4-5 10 1-3-6 

3 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

4 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

 
Efficiency 
1. Dijkstra's algorithm 
The efficiency of Dijkstra’s varies depending on |V|=n Delete 
Min sand |E| updates for priority queues that were used. If a 
Fibonacci heap was used then the complexity is  O( | E | + | V | 
log | V | ) ,which is the best bound. The Delete Mins operation 
takes O(log|V|).If a standard binary heap is used then the 
complexity is O( | E |log |E|),| E | log |E|. If the set used is a 
priority queue then the complexity is O(|E|+|V|2) where 
O(|V|2)   is from  |V| scans of the unordered set New Frontier 
to find the vertex with the least Distance value. 

2. Bellman-Ford algorithm 
Routing algorithms based on the distributed Bellman-Ford 
algorithm (DBF) suffer from exponential message complexity 
in some scenarios. The message complexity of the first 
algorithm, called the multiplicative approximation algorithm, 
is O(nm log (nΔ)), where Δ is the maximum length over all 
edges of an n-nodes m-edges network. The message 
complexity of the second algorithm, called the additive 
approximation algorithm, is O(Δ/δ nm), where is δ is the 
minimum length over all edges in the network. 
3. A* Search Algorithm 
A* search has been implemented in the UMOP multi-agent 
planning framework to study its performance characteristics. 
The time limit was 600 seconds and the memory limit was 
450 MB. For UMOP and DOP the number allocated BDD 
nodes of the BDD-package and the number of partitions in the 
disjunctive partitioning were hand-tuned for best performance.  
 
Big-O Notation for complexity and is expressed in terms of 
the order of magnitude of frequency count gives in the table 3. 
The graphical comparison for efficiency in terms of speed is 
shown in Fig. 3 

Table 3 Efficiency in terms of speed 
Run 
Time(N) 

Dijkstra Bellman 
Ford 

A* Speed(F) 

400 5.490 4.770 3.246 0.799 
500 6.862 5.962 4.058 0.999 
600 8.235 7.155 4.869 1.198 
700 9.607 8.347 5.681 1.398 
800 10.980 9.540 6.493 1.598 
900 12.353 10.732 7.304 1.798 
1000 13.725 11.925 8.116 1.998 

 
Fig.3 : Comparison of efficiency in terms of speed 

 
Time Complexity 
1. Dijkstra algorithm 
A implementation of the priority queue gives a run time 
complexity O(V²), where V is the number of vertices. 
Implementing the priority queue with a Fibonacci heap makes 
the time complexity O(E + V log V), where E is the number of 
edges.  
2. Bellman ford algorithm 
Its worst case time complexity is the same as the original 
Dijkstra Algorithm i.e. O( | V | 2 ) , where | V | is the number 
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of nodes in the network. Unlike QoSRBF  it is not ensured 
that  QoSRDKS can always find a rout satisfying multiple 
QoS requirements, even when there exists one. The simulation 
results show, however that QoSRDKS  is also very efficient. 
3. A* search algorithm 
A* algorithm generally is polynomial however it can become 
exponential when it's exponential have it's complexity as 
O(x^n) where n is the maximum length of any path in the 
revealed area and x is a is the average number of edges per 
node. 

The table 4 gives that the Time Complexity of the 
shortest path algorithms depends on the number of vertices, 
number of edges , edge length and the heuristic in case of the 
A* algorithm. It is observed that the time complexity of the 
Dijkstra’s Algorithm depends on the number of vertices and is 
inversely proportional to the number of vertices. The 
comparison of Time complexity is shown in Fig. 4. For the 
graph of six vertices and nine edges The Dijsktra’s algorithm 
gives time complexity of 7.0036 which is far below than that 
of Bellman Ford because the number of vertices is less and the 
Bellman Ford algorithm depends on the edges length as well 

Table4 : Analysis of time Complexity 
Algorith
m 

Formula Vertex 
(V) 

Edges 
(E) 

Length 
(L) 

Heuristi
c(H) 

Time 
Complexit
y 

Dijkstra’s V log (E) 6 9 10 - 7.0036 
Bellman 
Ford 

V*E* log(V*L) 6 9 10 - 96.00 

A* Log (H*V) 6 9 10 100 2.77 

 
Fig.4 Comparision of Time Complexity 

Computational Cost 
1. Dijkstra’s algorithm 
Computational cost of Dijkstra's algorithm using an array or 
list to store the labeled vertices is  O(V2 + E) = O(V2)  
2. Bellman Ford  algorithm 
In the worst case computational cost of Bellman Ford 
algorithm uses O(V3) time in order to find single-source 
shortest paths. This is not very efficient. By a slight 
modification it can find all-pairs shortest paths in the same 
time.  
3. A* search algorithm 
The complexity for A* depends on the heuristic. In the worst 
case, the number of nodes expanded is exponential in the 
length of the solution (the shortest path), but it is polynomial 
when the heuristic function h meets the following condition:| 
h(x) − h * (x) | = O(logh * (x)) 
where h * is the optimal heuristic, 

Table 5 shows the numerical analysis and Fig.5 shows the 
graphical analysis of the computational cost performed for the 
graph with six vertices and nine edges.  

Table 5 Analysis of Computational Cost 

Method 
Cost 

Complexity 
Communication 

Number 
Communication 

Volume 

Dijkstra’s FN3/P 28.56 0 0 0 0 

Bellman 
Ford 

N3/P 24 N log(P) 5.72 N2 log(P) 34.352

A* N3/P 24 N log (P) 5.72 
N2 

log(P)/sqrt(P) 
11.45 

 

 
Fig. 5 Comparison of Cost Complexity 

Space Complexity 
The space complexity of Dijkstra’s algorithm is more for the 
lower values of the vertex as it is inversely proportional to the 
vertex. The Bellman Ford space complexity is lower for the 
lower number of vertices and is directly proportional to the 
cardinality of the vertices. 

Table 6 Analysis of Space Complexity 
Algorithm Formula Vertex(V) Edges( E) Space 

Complexity 
Dijkstra’s V*(V+E) log (V) 6 9 70.033 
Bellman 
Ford 

V 6 9 6 

A* V+E 6 9 15 

 
Fig. 6 Comparison of space complexity 

Fig. 6 indicates the A* being a search algorithm basically 
gives near to constant space complexity and has negligible 
effect for the number of vertices where as Dijkstra’s algorithm 
and Bellman Ford as more variations for small changes of the 
number of vertices  . 
Performance and Efficiency 
Performance and Efficiency is depending on the previously 
compared parameters that is Computation Cost, Speed and 
Space and Time complexity. It is observed that lower number  
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of nodes in Bellman Ford  algorithm is Better and for the 
Higher number of nodes the Dijkstra’s algorithm is more 
efficient. The A* algorithm is best suited for the searching for 
the nodes amongst the High number of nodes. 
Debugging Activities 
1. Dijkstra’s algorithm 
Assertions are used for the implementation of the algorithm 
and it vary from case to case. In this case it is capable to 
handle the graphs with more than 10000 vertices. Hence 
included an assertion that will fail if the input violates this 
assumption. 
2. Bellman ford algorithm 
Debugging equation for  Bellman-Ford when Label routers 
i=A, B, C, … and D(i,j) = distance for best route from i to 
remote j and  d(i,j) = distance from router i to neighbor j then 
it set to  infinity if i=j or i and j not immediate neighbors. 
3. A* search algorithm 
There are number of simple optimizations or implementation 
details that can significantly affect the performance of an A* 
implementation. The first detail is that the way the priority 
queue handles ties and has a significant effect on performance 
on applications. If ties are broken so the queue behaves in a 
LIFO manner, A* will behave like Depth-first search among 
equal cost paths. 
Better Algorithms under specific application 
 Dijkstra's algorithm can be implemented in O(|V|^2) or 
O(|E|*log(|V|)) time depending on how the next node to 
consider is chosen. It is observed that as |E| increases, it 
approaches |V|^2, so choosing the right programming 
representation requires knowing something about the potential 
inputs to the application area.  
On the other hand the Bellman Ford algorithm that handles 
negative weighted edges runs in O(|E| * |V|) time, which is 
significantly slower -- for so-called dense graphs with many 
edges, it can approach a cubic time of O(|V|*|E|) as |E| is 
O(|V|^2).  
A* algorithm is the best algorithm for searching the path at 
least cost. It uses a distance-plus-cost heuristic function 
(usually denoted f(x)) to determine the order in which the 
search visits nodes in the tree. 
 

V RESULT AND  DISCUSSION 
 

While analysing the result for the application specific 
comparison of three shortest path problem solving algorithms 
namely Dijkstra’s, Bellman Ford and A* Algorithms. It is 
noted that Dijkstra’s and Bellman Ford algorithms solve the 
single source shortest path problem. The primary difference in 
the function of the two algorithms is that Dijkstra's algorithm 
cannot handle negative edge weights. Bellman-Ford's 
algorithm can handle some edges with negative weight. It is 
noted that if there is a negative cycle there is no shortest path. 
Following points gives the result analysis of the different 
algorithm for some application specific. 
Computational Cost Summery 

 The maximum time over all process depends on 
number of vertex and edges. 

 The cost complexity for Dijkstra’s algorithm is 
highest than Bellman Ford algorithm. 

 The cost complexity of Bellman Ford algorithm is 
almost same 

Efficiency in terms of speed 
 The Bellman Ford Algorithm was faster than the 

Dijkstra’s algorithm. 
 Speed advantage for Bellman Ford algorithm was 

less than reported value, F = 1.19 
 Speed for Dijkstra’s is highest for same number of 

process run. 
 With increasing number of process, Dijkstra’s 

algorithm eventually becomes faster because no 
communication occurs 

Time complexity 
 Time Complexity of the shortest path algorithms 

depends on the number of vertices, number of edges , 
edge length and the heuristic in case of the A* 
algorithm. 

 It observed that the time complexity of the Dijkstra’s 
Algorithm depends on the number of vertices and is 
inversely proportional to the number of vertices. 

 Time complexity was highest for Bellman Ford than 
Dijkstra’s and A*algorithm. 

 Time complexity was worst for A* algorithm. 
 Performance and Efficiency 
Performance and Efficiency  
It found that for lower number of nodes the Bellman Ford 
algorithm  is better and for the higher number of nodes the 
Dijkstra’s Algorithm is more efficient.  

 The A* algorithm is best suited for the searching for 
the nodes amongst the large number of nodes. 

Debugging Activities 
 The Dijkstra’s algorithm is easy to implement and 

thus the debugging of it is also simpler.  
 The Bellman Ford algorithm is most difficult to 

implement and is basically finds its use in the 
network routers thus is difficult to debug as hardware 
constraints are also to be considered while 
implementing.  

 A* Algorithm is the variation of the Bellman ford but 
is basically used as searching algorithm debugging 
depends on the amount of the data to search among. 

 
VI CONCLUSION 

 
In the result of the study it found that none of the algorithm is 
capable to handle the bottleneck in network if the number of 
nodes increases or the network traffic increases. 
Following conclusion are drawn from the study for each 
algorithm 
 Dijkstra’s Algorithms  

o Dijkstra’s As per the numerical analysis performed 
conclude that Dijkstra’s algorithm is comparatively 
more efficient if the number of nodes is more and the 
implementation is also easier. The applications where 

M.V. Mawale et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2614-2619.

2618



the Network traffic is more the Dijkstra’s algorithm 
based applications are better but for the low traffic 
networks the Bellman Ford based Systems perform 
faster.  
o Study recommended that implementation of 

Dijkstra's algorithm best because it is easier to 
code and will be about as efficient as A*.  

o Dijkstra’s algorithm radiates out from the initial 
node. 

 Bellman Ford Algorithms  
o Efficiency  dependent on processing time of 

algorithms  
o Space and Time complexity depends on amount 

of information required from other nodes  
o Its implementation is specific and depends on 

application implementation. 
o It converge under static topology and costs  
o It converge to same solution  
o If link costs depend on traffic, which depends on 

routes chosen, may have feedback instability. 
 A* Algorithms 

o A* search algorithm is having better utility if it 
is  be for the searching of the nodes and thus the 
optimized search applications should use it for 
better result.  

o The A* algorithm directs its search towards the 
destination basically, with a heuristic is 
equivalent to A* except for a couple of technical 
fact.  

o A* use less memory. 
o The effectiveness of the A* algorithm depends 

on the heuristic h(x)  
o It run in polynomial time  
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